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1 Context
SyDPaCC [9, 8, 1] is a set of libraries for the Coq proof assistant. It allows to write naive
functional programs (i.e. with high complexity) that are considered as specifications, and to
transform them into more efficient versions. These more efficient versions can then be au-
tomatically parallelized before being extracted from Coq into source code for the functional
language OCaml together with calls to the Bulk Synchronous Parallel ML (BSML) library.

For the optimization of sequential functions, SyDPaCC provides theorems such a the second
homomorphism theorem that states that a homomorphic function is equivalent to a composition
of map and reduce.

SyDPaCC also provides a set of algorithmic skeletons, programmed using BSML, and proved
correct with respect to sequential functions. Algorithmic skeletons are higher-order function
implemented in parallel, such as map and reduce but on distributed data structures. The way
the correctness is stated is the basis of the automatic parallelization feature of SyDPaCC.

SyDPaCC is available at https://sydpacc.github.io.

2 The Projects
The following sub-sections describe several possible projects.

2.1 Applications of the List Homomorphism Theorems
SyDPaCC provides a formalization in Coq of the classical three theorems about list homomor-
phisms [9]. The current distribution of SyDPaCC contains only a few applications developed
using these theorems. The goal of this project is to develop new applications using these theo-
rems. The applications can be taken from the literature on list homomorphisms.
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In developing an application using these theorems there are basically four steps, the last one
being automatic:

• expressing the application as a sequential function performing the traversal of the input
list from left to right,

• expressing the application as a sequential function performing the traversal of the input
list from right to left,

• proving some simple properties about the operations used to implement the application,

• applying the theorems and the automatic parallelization mechanism of SyDPaCC to ob-
tain a parallel program.

2.2 Application of the BSP Homomorphism Theory
In addition to the theory of lists (see previous sub-section), SyDPaCC provides an original
theory of BSP homomorphisms [2]. It has already been used to develop verified parallel ap-
plications [8]. The goal of this project is to develop a new algorithm using this theory: sparse
matrix-vector multiplication. A non-verified implementation of the algorithm exists for the
C++ library OSL [6].

2.3 Applications using Trees
Recently several representations of sequential and distributed trees have been added to SyD-
PaCC as well as functions and skeletons manipulating these structures [10]. The goal of this
project is to use these new features of SyDPaCC to implement verified algorithms on trees. The
project will include experiments of the new applications on several parallel machines including
Monsoon.

2.4 The Diffusion Theorem on Trees
The diffusion theorem and the associated accumulate skeleton of Hu, Iwasaki and Takeichi [3,
4] offer a way to calculate efficient programs when general accumulative computations are
needed, and to efficiently parallelize them. There is an efficient C++ and MPI implementation
of accumulate [5]. The diffusion theorem and accumulate extend the class of functions that
can be efficiently derived into a parallel program. The diffusion theorem for lists is available in
SyDPaCC [7].

The goal of the project is to add the diffusion theorem on trees to SyDPaCC. To do so, we
need:

• a formalization of the diffusion theorem in Coq in such a way it can be easily used to
derive efficient programs for general accumulative computations on trees,

• a verified implementation of the accumulate skeleton in Coq,

• an example of program developed using this theorem as well as experiments on a parallel
machine.
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3 Requirements
Minimum Requirements

• A taste for functional programming

• A taste for formal reasoning

• CS 396 Principles of Programming Languages

• CS 451 Mechanized Reasoning about Programs

Preferred Requirements

• CS 499 Parallel Programming

4 Laboratory
For the development and experiments, students will be given access to SSERL1 (SICCS) and
its machines including the Titan workstation (256 Gb of memory and 32 cores) as well as
Monsoon2.
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