
Systematic Development of Programs
for Parallel and Cloud Computing

using the Coq Proof Assistant
CS 485 – Undergraduate Research

Supervisor: Frédéric Loulergue

Fall 2019 or/and Spring 2020

1 Context
SyDPaCC [9, 8, 1] is a set of libraries for the Coq proof assistant. It allows to write naive
functional programs (i.e. with high complexity) that are considered as specifications, and to
transform them into more efficient versions. These more efficient versions can then be au-
tomatically parallelized before being extracted from Coq into source code for the functional
language OCaml together with calls to the Bulk Synchronous Parallel ML (BSML) library.

For the optimization of sequential functions, SyDPaCC provides theorems such a the second
homomorphism theorem that states that a homomorphic function is equivalent to a composition
of map and reduce.

SyDPaCC also provides a set of algorithmic skeletons, programmed using BSML, and proved
correct with respect to sequential functions. Algorithmic skeletons are higher-order function
implemented in parallel, such as map and reduce but on distributed data structures. The way
the correctness is stated is the basis of the automatic parallelization feature of SyDPaCC.

SyDPaCC is available at https://sydpacc.github.io.

2 The Projects
The following sub-sections describe several possible projects.

2.1 Applications of the List Homomorphism Theorems
SyDPaCC provides a formalization in Coq of the classical three theorems about list homomor-
phisms [9]. The current distribution of SyDPaCC contains only a few applications developed
using these theorems. The goal of this project is to develop new applications using these theo-
rems. The applications can be taken from the literature on list homomorphisms.

1

https://sydpacc.github.io


In developing an application using these theorems there are basically four steps, the last one
being automatic:

• expressing the application as a sequential function performing the traversal of the input
list from left to right,

• expressing the application as a sequential function performing the traversal of the input
list from right to left,

• proving some simple properties about the operations used to implement the application,

• applying the theorems and the automatic parallelization mechanism of SyDPaCC to ob-
tain a parallel program.

2.2 Application of the BSP Homomorphism Theory
In addition to the theory of lists (see previous sub-section), SyDPaCC provides an original
theory of BSP homomorphisms [2]. It has already been used to develop verified parallel ap-
plications [8]. The goal of this project is to develop a new algorithm using this theory: sparse
matrix-vector multiplication. A non-verified implementation of the algorithm exists for the
C++ library OSL [6].

2.3 Applications using Trees
Recently several representations of sequential and distributed trees have been added to SyD-
PaCC as well as functions and skeletons manipulating these structures [10]. The goal of this
project is to use these new features of SyDPaCC to implement verified algorithms on trees. The
project will include experiments of the new applications on several parallel machines including
Monsoon.

2.4 The Diffusion Theorem on Trees
The diffusion theorem and the associated accumulate skeleton of Hu, Iwasaki and Takeichi [3,
4] offer a way to calculate efficient programs when general accumulative computations are
needed, and to efficiently parallelize them. There is an efficient C++ and MPI implementation
of accumulate [5]. The diffusion theorem and accumulate extend the class of functions that
can be efficiently derived into a parallel program. The diffusion theorem for lists is available in
SyDPaCC [7].

The goal of the project is to add the diffusion theorem on trees to SyDPaCC. To do so, we
need:

• a formalization of the diffusion theorem in Coq in such a way it can be easily used to
derive efficient programs for general accumulative computations on trees,

• a verified implementation of the accumulate skeleton in Coq,

• an example of program developed using this theorem as well as experiments on a parallel
machine.

2



3 Requirements
Minimum Requirements

• A taste for functional programming

• A taste for formal reasoning

• CS 396 Principles of Programming Languages

• CS 451 Mechanized Reasoning about Programs

Preferred Requirements

• CS 499 Parallel Programming

4 Laboratory
For the development and experiments, students will be given access to SSERL1 (SICCS) and
its machines including the Titan workstation (256 Gb of memory and 32 cores) as well as
Monsoon2.

References
[1] Kento Emoto, Frédéric Loulergue, and Julien Tesson. A Verified Generate-Test-Aggregate

Coq Library for Parallel Programs Extraction. In Interactive Theorem Proving (ITP),
number 8558 in LNCS, pages 258–274, Wien, Austria, 2014. Springer. doi:10.1007/978-
3-319-08970-6 17.

[2] Louis Gesbert, Zhenjiang Hu, Frédéric Loulergue, Kiminori Matsuzaki, and Julien Tes-
son. Systematic Development of Correct Bulk Synchronous Parallel Programs. In Paral-
lel and Distributed Computing, Applications and Technologies (PDCAT), pages 334–340.
IEEE, 2010. doi:10.1109/PDCAT.2010.86.

[3] Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating Efficient Parallel Programs.
In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM’99), pages 85–94. ACM, January 22-23 1999.

[4] Z. Hu, H. Iwasaki, and M. Takeichi. An accumulative parallel skeleton for all. In
European Symposium on Programming (ESOP), number 2305 in LNCS, pages 83–97.
Springer, 2002. doi:http://citeseer.nj.nec.com/article/hu02accumulative.html.

[5] Hideya Iwasaki and Zhenjiang Hu. A new parallel skeleton for general accumulative
computations. International Journal of Parallel Programming, 32(5):389–414, 2004.
doi:10.1023/B:IJPP.0000038069.80050.74.

1https://sserl.github.io
2https://nau.edu/high-performance-computing

3

http://dx.doi.org/10.1007/978-3-319-08970-6_17
http://dx.doi.org/10.1007/978-3-319-08970-6_17
http://dx.doi.org/10.1109/PDCAT.2010.86
http://dx.doi.org/http://citeseer.nj.nec.com/article/hu02accumulative.html
http://dx.doi.org/10.1023/B:IJPP.0000038069.80050.74
https://sserl.github.io
https://nau.edu/high-performance-computing


[6] Joeffrey Légaux, Zhenjiang Hu, Frédéric Loulergue, Kiminori Matsuzaki, and Julien Tes-
son. Programming with BSP Homomorphisms. In Euro-Par Parallel Processing, number
8097 in LNCS, pages 446–457, Aachen, Germany, 2013. Springer. doi:10.1007/978-3-
642-40047-6 46.

[7] Frédéric Loulergue. A verified accumulate algorithmic skeleton. In Fifth International
Symposium on Computing and Networking (CANDAR), pages 420–426, Aomori, Japan,
November 19-22 2017. IEEE. doi:10.1109/CANDAR.2017.108.

[8] Frédéric Loulergue, Simon Robillard, Julien Tesson, Joeffrey Légaux, and Zhenjiang Hu.
Formal Derivation and Extraction of a Parallel Program for the All Nearest Smaller Values
Problem. In ACM Symposium on Applied Computing (SAC), pages 1577–1584, Gyeongju,
Korea, 2014. ACM. doi:10.1145/2554850.2554912.

[9] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. Calculating Parallel Pro-
grams in Coq using List Homomorphisms. Int J Parallel Prog, 45:300–319, 2017.
doi:10.1007/s10766-016-0415-8.

[10] Jolan Philippe. Systematic development of efficient programs on parallel data structures.
Master’s thesis, School of Informatics Computing and Cyber Systems, Northern Arizona
University, May 2019.

4

http://dx.doi.org/10.1007/978-3-642-40047-6_46
http://dx.doi.org/10.1007/978-3-642-40047-6_46
http://dx.doi.org/10.1109/CANDAR.2017.108
http://dx.doi.org/10.1145/2554850.2554912
http://dx.doi.org/10.1007/s10766-016-0415-8

	Context
	The Projects
	Applications of the List Homomorphism Theorems
	Application of the BSP Homomorphism Theory
	Applications using Trees
	The Diffusion Theorem on Trees

	Requirements
	Laboratory

