
Verification of the
Contiki-NG Operating System

for the Internet of Things
CS 485 – Undergraduate Research

Supervisor: Frédéric Loulergue

Fall 2019 or/and Spring 2020

1 Context
Connected devices and services, also referred to as Internet of Things (IoT), are gaining wider
and wider adoption in many security critical domains. This raises important security chal-
lenges, which can be addressed using formal verification.

Contiki [5] is a popular open-source operating system for IoT devices providing full low-
power IPv6 connectivity, including 6TiSCH, 6LoWPAN, RPL, or CoAP standards. It is imple-
mented in C with an emphasis on memory and power optimization, and contains a kernel linked
to platform-specific drivers at compile-time. When Contiki was created in 2002, no particular
attention was paid to security. Later, communication security was integrated.

Formal verification of the Contiki code was not performed until very recent case studies [8,
9, 2, 7, 3, 4]. These case studies were performed using the ACSL specification language [1]
and the deductive verification plugin WP of Frama-C [6].

Contiki-NG 1 is a new version of Contiki.

2 The Projects
The following sub-sections describe several possible projects.

2.1 Ring Buffer
The goal of the project is to specify and verify, using Frama-C and WP, the ring buffer library
of Contiki-NG. This module implements a circular buffer where bytes can be read and written
independently. The buffer itself is an array.

1http://www.contiki-ng.org

1

http://www.contiki-ng.org


2.2 Stack & Queue
The goal of the project is to verify, using Frama-C and WP, the stack and queue modules of
Contiki-NG. Both modules rely on the list API of Contiki-NG. A first step is therefore to adapt
if necessary the specifications of the Contiki list API to Contiki-NG. There are currently three
different specifications of the list API module. In this project, you will experiment with all
three and compare the pros and cons of each approach for the verification of the queue and
stack modules.

2.3 Double Linked Lists
The goal of the project is to verify, using Frama-C and WP, the double linked lists module of
Contiki-NG. Single linked lists have already been verified in two different ways [2, 3]. In this
project you will consider the adaptation of these two approaches to the verification of double
linked list and compare the approaches.

2.4 Circular Lists
The goal of the project is to verify, using Frama-C and WP, the circular lists module of Contiki-
NG. Non circular lists have already been verified in two different ways [2, 3]. The verification
of circular lists raises new challenges. Part of the work will be to determine if one of these
approaches can be adapted to circular lists, or if a completely new approach is required. For
this project CS451 is a prerequisite.

2.5 Heap Memory
A simple memory module was provided by Contiki. This module memb was specified and
verified using Frama-C [8]. The heapmem module of Contiki-NG is a dynamic heap memory
allocator similar to malloc/free in standard C. The goal of this project is to specify and verify
heapmem using Frama-C and its plugin WP. For this project CS451 is a prerequisite.

3 Requirements
Minimum Requirements

• Good knowledge of programming in C

• A taste for formal reasoning

• CS 396

• Enrolled in CS 451 for Fall 2019

Preferred Requirements

• CS 451

2



4 Laboratory
Students will be given access to SSERL2 and its machines including the Titan workstation (256
Gb of memory and 32 cores).

References
[1] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin Monate, Yan-

nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, February
2011. http://frama-c.cea.fr/acsl.html.

[2] Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue. Ghosts for Lists: A Critical
Module of Contiki Verified in Frama-C. In Nasa Formal Methods, number 10811 in LNCS,
pages 37–53. Springer, 2018. doi:10.1007/978-3-319-77935-5 3.

[3] Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue. Logic against ghosts: Com-
parison of two proof approaches for a list module. In ACM Symposium on Applied Com-
puting (SAC), pages 2186–2195. ACM, 2019. doi:10.1145/3297280.3297495. Best Paper
Award.

[4] Allan Blanchard, Frédéric Loulergue, and Nikolai Kosmatov. Towards Full Proof Automa-
tion in Frama-C using Auto-Active Verification. In Nasa Formal Methods, LNCS. Springer,
2019. to appear.

[5] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki – a lightweight and flexible
operating system for tiny networked sensors. In LCN 2014. IEEE, 2004.

[6] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A software analysis perspective. Formal Asp. Comput., 27(3):
573–609, 2015. doi:10.1007/s00165-014-0326-7.

[7] Frédéric Loulergue, Allan Blanchard, and Nikolai Kosmatov. Ghosts for lists: from ax-
iomatic to executable specifications. In Tests and Proofs (TAP), volume 10889 of LNCS,
pages 177–184. Springer, 2018. doi:10.1007/978-3-319-92994-1 11.

[8] Frédéric Mangano, Simon Duquennoy, and Nikolai Kosmatov. A memory allocation mod-
ule of Contiki formally verified with Frama-C. A case study. In CRiSIS 2016, volume
10158 of LNCS. Springer, 2016. doi:10.1007/978-3-319-54876-0 9.

[9] Alexandre Peyrard, Simon Duquennoy, Nikolai Kosmatov, and Shahid Raza. Towards
formal verification of Contiki: Analysis of the AES–CCM* modules with Frama-C. In
RED-IoT 2018, co-located with EWSN 2018. ACM, 2018.

2https://sserl.github.io

3

http://frama-c.cea.fr/acsl.html
http://dx.doi.org/10.1007/978-3-319-77935-5_3
http://dx.doi.org/10.1145/3297280.3297495
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/978-3-319-92994-1_11
http://dx.doi.org/10.1007/978-3-319-54876-0_9
https://sserl.github.io

	Context
	The Projects
	Ring Buffer
	Stack & Queue
	Double Linked Lists
	Circular Lists
	Heap Memory

	Requirements
	Laboratory

