
Lessons from Implementing theLessons from Implementing the 
BiCGStab Method with SkeTo Library

Kiminori Matsuzaki1 and Kento Emoto2

1 Kochi University of Technology
2 University of Tokyo



AgendaAgenda

E i bilit d fExamine programmability and performance 
of skeletal parallelism with a real application

BiCGStab method and target application

SkeTo: parallel skeleton library

Two approaches to developmentTwo approaches to development

Experiment resultsp

Conclusion

2



BiCGStab MethodBiCGStab Method

Bi-Conjugate GradientBi-Conjugate Gradient
Stabilized method
[van der Vorst, 1992][ , ]

Solve systems of linear
equations: Ax = b
An iterative method

2 matrix-vector multiplication
(probmv function)
4 inner-products
Other basic linearOther basic linear 
algebraic computations

3



Target ApplicationTarget Application

Original program is given by a researcherOriginal program is given by a researcher

BiCGStab is used in a 3D-space situation
The matrix-vector multiplication is actually
a 3D-stencil computation

A set of data is
a vector
(in linear algebra)
a 3D-arraya 3D-array
(in stencil comp.)

4



SkeTo: Parallel Skeleton LibrarySkeTo: Parallel Skeleton Library

A library with data-parallel skeletonsA library with data-parallel skeletons
Data-parallel skeletons
= collective operations on distributed data collective operations on distributed data
Data structures: 1D-arrays (lists), 2D-arrays, trees

Implemented in C++ and MPI
Originally for PC cluster computing

Also available for recent multicore CPUs

SPMD model: but, parallelism is only in skeletons

Optimization by fusion transformation

5



Parallel List Skeletons (1)Parallel List Skeletons (1)

(Almost) Element-wise computations(Almost) Element-wise computations
For N elements, O(N/P) time with P processors.

5 1 3 4 10 2 6 8
map (×2)

5 1 3 4
3 4 2 1

zip (－)
3 -4 2 1

2 5 1 3

5 1 3 4 0 5 1 3
shift>>(0)

6



Parallel List Skeletons (2)Parallel List Skeletons (2)

Reduction and scans (prefix-sums)Reduction and scans (prefix-sums)
For N elements, O(N/P + log P) time with P procs.
Operators should be associativeOperators should be associative.

d ( )
5 1 3 4

reduce (+)
13

5 1 3 4 2 7 8 11
scan (+)

2 15

7



Fusion OptimizationFusion Optimization

One overhead of skeletal programsOne overhead of skeletal programs
Intermediate data between skeletons

E g reduce(+ map(^2 map( ave as)))E.g.   reduce(+, map(^2, map(-ave, as)))
(2 intermediate arrays among 3 loops)

Fuse skeletons and remove intermediate data
[IFL 2009]

B C++ template techniq eBy C++ template technique
Not only map and reduce, we can (partially)
optimize scan or shift skeletonsoptimize scan or shift skeletons.
For simple programs like above, compiled code
is as efficient as hand-written codeis as efficient as hand written code.

8



Two ApproachesTwo Approaches
The first step to programming with SkeTo

Deciding how to map data in problems
to distributed structures in SkeTo

Target application involves:
Linear algebraic computations (for 1D vectors)Linear algebraic computations (for 1D vectors)
3D-stencil computations

Two approaches to implementation
The whole vector distributed list
1D of 3D-space distributed list

9



1st approach: 

i th h l t t li tmapping the whole vector to list
3D-stencil computation3D-stencil computation

First, we flatten the nested loop.
We need to access originally neighbor (in 3D)We need to access originally neighbor (in 3D)
but far-away elements (e.g. b[i][j+1][k])
Implement an extended shift skeleton: gshiftImplement an extended shift skeleton: gshift

As a user-defined skeleton

Linear algebraic computation
Easy to implement

10



Code for Stencil ComputationCode for Stencil Computation

addition ‘a? *’ shifted access
Skeletal code corresponds to algebraic definition

?

Skeletons except for gshift can be p g
optimized by fusion

11



2nd Approach:

M i 1D f 3D t li tMapping 1D of 3D-spcae to list
Slice 3D-space and define a list of planesSlice 3D-space and define a list of planes

3D stencil computation
We can implement with map, zip, and shift

Linear algebraic computationLinear algebraic computation
We need to define element-wise +, *, etc.

Function objects with a 2 nested loopFunction objects with a 2-nested loop

additional 70 lines of code

12



Manual Fusion TransformationManual Fusion Transformation

But the 2nd one ran slow after fusionBut, the 2nd one ran slow after fusion
E.g. For computing                          

Inner loops are
not fused

Solutions: nested optimization, 3D-array 
skeletons, manual fusion (+50 lines), ( )

13



Further OptimizationFurther Optimization

The program still had large overheadThe program still had large overhead.

Reason: Elements are copied in skeletons
Design for simplicity (and fast for simple elements)
Type of function objects: 

Our solution:
Use smart pointers to avoid data copies; andUse smart pointers to avoid data copies; and
a special implementation of skeletons with 
serializationserialization
Serialization will be imported in SkeTo ver1.10

14



Experiment 1:

O PC Cl t ith M lti CPUOn PC Cluster with Multicore-CPUs
Relative speedup: 1D (1st) > 3D (2nd)Relative speedup: 1D (1st) > 3D (2nd)

Performance: Depend on size, #cores

Smaller (N=100^3) Larger (N=200^3)

s)
Ti

m
e 

(s

#

15

#cores



Experiment 2:

O D l d SOn Dual-quadcore Server
Performance: 3D (2nd) > 1D (1st)Performance: 3D (2nd) > 1D (1st)

Overhead w.r.t. sequential programs (1D)

Smaller (N=100^3) Larger (N=200^3)

s))

Ti
m

e 
(s

Ti
m

e 
(s

)

#

16

#cores#cores



Experiment 3:

C i T C ilComparing Two Compilers
Performance depends on approachesPerformance depends on approaches
and compilers

Faster 1D code by GCCFaster 1D code by GCC
Faster 3D code by Intel Compiler

)
Ti

m
e 

(s
)

17

#cores



ConclusionConclusion

We have obtained 7 lessons (in the paper)We have obtained 7 lessons (in the paper)
in implementing the BiCGStab with SkeTo

Two implementation with list skeletonsTwo implementation with list skeletons
By mapping the whole vector to list
By mapping 1D of 3D-space to listy pp g p

Performed optimization with fusion transformation 
automatically/manually
Several experiment results are shown

Performance depends on problem-size,
architecture, and compiler

18



Future WorkFuture Work

Implement other real applications andImplement other real applications and
examine what we need more

Application: Machine Learning etcApplication: Machine Learning, etc.
Skeletons: permute, groupByKey

SkeTo ver. 1.10 coming soon
http://www.ipl.t.u-tokyo.ac.jp/sketo/

Re-implementation of 
matrix skeletons
S t f i li tiSupport for serialization
of user-defined data
(Experimental) C++0x support(Experimental) C++0x support

19


