Estimating Parallel Performance, A Skeleton-Based Approach

Oleg Lobachev and Rita Loogen

HLPP 2010 September 25, 2010

Oleg Lobachev and Rita Loogen Estimating Parallel Performance, A Skeleton-Based Approach

Parallel Performance Measures

- Amdahl's law
- speedup = seq. time / parallel time
- efficiency
- serial fraction
- isoefficiency, scaled speedup, etc.

 \Rightarrow yet another one. Why?

... a Skeleton-Based Approach

- algorithmic skeletons = parallel algorithm abstractions
- in FP: higher-order functions
- skeletons as algorithm classification
- e.g., map-like, divide and conquer, iteration
 - \Rightarrow use skeletons to designate types of parallel computation

The Essential Idea I

- different types of parallel programs run differently
- $\bullet \ \Rightarrow$ classification using skeletons

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

The Essential Idea I

- different types of parallel programs run differently
- ullet \Rightarrow classification using skeletons
- parallel programs do various things
 ⇒ computation part + additional parallel overhead
- additional parallel overhead is harmful
- name it "parallel penalty"

The Essential Idea II

- n = input size, p = number of processors
- T(n) = seq. runtime
- assumption: T(n) = total amount of work
- T(n, p) = parallel runtime
- traditional view:

$$T(n,p) = T(n)/\text{speedup}(n,p)$$

• our approach: $\bar{A}(n,p) = \text{parallel penalty}$

 $T(n,p) = T(n)/p + \bar{A}(n,p)$

The Essential Idea III

- sequential time T(n) and parallel penalty $\overline{A}(n, p)$ are of different nature
 - \Rightarrow predict them separately!
- use statistical methods

ELE OQO

The Essential Idea III

- sequential time T(n) and parallel penalty $\overline{A}(n, p)$ are of different nature
 - \Rightarrow predict them separately!
- use statistical methods
- be aware: Ā(n, p) has two dimensions: input size n and number of processors p ⇒ fix one, predict the other

Estimating Parallel Penalty and Runtime

"learning"

- measure T(n) for several values of n
- measure T(n, p) for several values of n or p keeping the other parameter fixed
- compute

$$\bar{A}(n,p) = T(n,p) - T(n)/p$$

prediction

- predict T(n) for non-measured values of n
- predict $\bar{A}(n, p)$ for non-measured values of n or p
- compute T(n, p) from above estimations

A B A B A B B B A Q A

Parallel Map Skeletons I

 parMap creates a process for each function application (task)
 we assume: same time needed for each list element T(n) = nT(1)

parMap:
$$T(n,p) = n/p T(1) + \overline{A}(n,p)$$

Parallel Map Skeletons I

- parMap creates a process for each function application (task)
- we assume: same time needed for each list element T(n) = nT(1)

parMap:
$$T(n,p) = n/p T(1) + \overline{A}(n,p)$$

Parallel Map Skeletons II

• farm: static task distribution

divide task list into blocks before the computation

same assumption: same task size for all tasks

farm:
$$T(n,p) = T(n/p) + \overline{A}(n,p)$$

Parallel Map Skeletons II

• farm: static task distribution

divide task list into blocks before the computation

• same assumption: same task size for all tasks

farm:
$$T(n,p) = T(n/p) + \overline{A}(n,p)$$

Parallel Iteration

- parallel do-while
- Ip iterations, p speculative tasks, I "rounds"
- s(n) cost for a single iteration

$$T(n) = lp s(n)$$
$$T(n, p, l) = l s(n) + \overline{A}(n, p)$$

How do we proceed?

measure T(n)
measure T(n, p)
compute Ā(n, p) from them

scale w.r.t. number of processors

scale w.r.t. input size

- $\hat{n} =$ non-measured input size
- estimate $T(\hat{n})$
- estimate $\bar{A}(\hat{n}, p)$
- compute $T(\hat{n}, p)$ from them

- p̂ = non-measured number of PEs
- T(n) is known!
- estimate $\bar{A}(n, \hat{p})$
- compute $T(n, \hat{p})$ from them

How do we proceed?

measure T(n)
measure T(n, p)
compute Ā(n, p) from them

scale w.r.t. number of processors

scale w.r.t. input size

- $\hat{n} =$ non-measured input size
- estimate $T(\hat{n})$
- estimate $\bar{A}(\hat{n}, p)$
- compute $T(\hat{n}, p)$ from them

- p̂ = non-measured number of PEs
- T(n) is known!
- estimate $\bar{A}(n, \hat{p})$
- compute $T(n, \hat{p})$ from them

How do we proceed?

measure T(n)
measure T(n, p)
compute Ā(n, p) from them

scale w.r.t. number of processors

scale w.r.t. input size

- $\hat{n} =$ non-measured input size
- estimate $T(\hat{n})$
- estimate $\bar{A}(\hat{n}, p)$
- compute $T(\hat{n}, p)$ from them

- p̂ = non-measured number of PEs
- T(n) is known!
- estimate $\bar{A}(n, \hat{p})$
- compute $T(n, \hat{p})$ from them

Introduction Performance estimation Case studies Conclusions Idea parMap Iteration Method Statistics

Statistical methods

spline	interpolation metho exact in specified po stepwise polynomial weighted extrapolat	d bints s ion			
loess	"local polynomial re inexact: regression stepwise polynomial special feature for e	egression fitting" fitting s xtrapolation			
lm	linear model fitting inexact: regression fits a single line	ïtting			
lm(poly)	linear model fitting with orthogonal polynomials inexact: regression fitting relaxed with polynomials				
mean	take average of the best two methods, $\langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$				
	Oleg Lobachev and Rita Loogen	Estimating Parallel Performance, A Skeleton-Based Approach			

三日 のへの

伺 ト イヨト イヨト ヨヨー わえつ

A speedup analogy

absolute speedup relative speedup VS. T(n,p)/T(n)T(n,p)/T(n,1)

need sequential time to compute $\overline{A}(n, p)$

Introduction Performance estimation Case studies Conclusions

Terminology Gauß Elimination Rabin-Miller test

Gauß Elimination: Predicting Sequential Time

- matrix computations
- a farm instance
- predict *T*(*n*) for
 n = 120, 150
- best: lm(poly)
- -3.41% rel. err
 for n = 120

Introduction Performance estimation Case studies Conclusions

Terminology Gauß Elimination Rabin-Miller test

Gauß Elimination: Predicting Parallel Penalty

Gauß Elimination: Estimation results

- want parallel runtime $T(\hat{n}, p)$ for $\hat{n} = 120$ and fixed p = 7
- combine estimations of $T(\hat{n})$ and $\bar{A}(\hat{n},7)$ w.r.t. \hat{n} $\Rightarrow T(\hat{n},p)$ with an relative error -1.69%
- estimate $T(n, \hat{p})$ for non-measured \hat{p} : also possible \Rightarrow see the paper, relative error -1.1%

Gauß Elimination: Estimation results

- want parallel runtime $T(\hat{n}, p)$ for $\hat{n} = 120$ and fixed p = 7
- combine estimations of $T(\hat{n})$ and $\bar{A}(\hat{n},7)$ w.r.t. \hat{n} $\Rightarrow T(\hat{n},p)$ with an relative error -1.69%
- estimate $T(n, \hat{p})$ for non-measured \hat{p} : also possible \Rightarrow see the paper, relative error -1.1%
- considered implementation of Gauß Elimination always spawns 8 tasks
- our method does not know this!

A A B A B A B A B B A A A

Serial Fraction

• serial fraction = measure for sequential part of the program

$$f(n,p) = \frac{T(n,p)/T(n) - 1/p}{1 - 1/p}$$

- parallel program quality measure
- should be constant

Parallel penalty vs. serial fraction for Gauß Elimination

Oleg Lobachev and Rita Loogen Estimating Parallel Performance, A Skeleton-Based Approach

Rabin-Miller Test

- Rabin-Miller test = instance of iteration skeleton
- checks for primality
- definite answer in negative case
- is never sure in positive case
- our implementation: speculative iteration has load-balancing issues always starts 20 tasks
- predict for an input size n = 11213

Results for Rabin-Miller Test

Parallel penalty vs. serial fraction for Rabin-Miller test

Oleg Lobachev and Rita Loogen Estimating Parallel Performance, A Skeleton-Based Approach

Conclusions and Future Work

Conclusions

- a method for parallel runtime estimation, better than a direct prediction for vast class of programs (more examples and experiments in the paper!)
- parallel penalty term as quality measure

Future work

- investigate relation to serial fraction further
- extend the formalism to further skeletons
- try other statistical methods
- try other prediction techniques

- automated learning?

Karatsuba multiplication: outline

- fast integer multiplication
- instance of divide and conquer skeleton
- used with a fine-granular divide and conquer skeleton
- implemented in Eden parallel Haskell extension
- distributed memory setting
- tested on a multicore

Karatsuba multiplication: results

<i>n</i> · 1000	16		56	60	64
T(n,8) T(n)	1.29 9.88	· · · ·	9.95 74.39	11.0 82.02	11.86 88.94
$\bar{A}(n,8)\cdot 100$	5.39		64.66	74.22	74.65
predict $T(n)$, rel. err, % predict \overline{A} , w.r.t. n , rel. err, %				-0.014 2.3	1.9 2.08
predict $T(n, p)$, rel. err, %				0.14	1.78

= 900

伺 と く き と く き と しき

Karatsuba multiplication

Karatsuba multiplication: estimating T(n)

