
Introduction
Transformation to Why

Example
Conclusion

BSP-WHY: an Intermediate Language for
Deductive Verification of BSP Programs

Jean Fortin and Frédéric Gava

Laboratoire d’Algorithmique, Complexité et Logique (LACL)
Université de Paris-Est

HLPP 2010 1 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Introduction

A need to prove parallel programs :
cost of the crash of massively parallel computations
more and more parallel programs

Additional difficulties :
Communication procedures
Synchronization mechanisms
Interleaving of instructions

Use of Hoare semantics
Annotated programs
Generation of proof obligations

HLPP 2010 2 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Introduction

A need to prove parallel programs :
cost of the crash of massively parallel computations
more and more parallel programs

Additional difficulties :
Communication procedures
Synchronization mechanisms
Interleaving of instructions

Use of Hoare semantics
Annotated programs
Generation of proof obligations

HLPP 2010 2 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Introduction

A need to prove parallel programs :
cost of the crash of massively parallel computations
more and more parallel programs

Additional difficulties :
Communication procedures
Synchronization mechanisms
Interleaving of instructions

Use of Hoare semantics
Annotated programs
Generation of proof obligations

HLPP 2010 2 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Introduction

A need to prove parallel programs :
cost of the crash of massively parallel computations
more and more parallel programs

Additional difficulties :
Communication procedures
Synchronization mechanisms
Interleaving of instructions

Use of Hoare semantics
Annotated programs
Generation of proof obligations

HLPP 2010 2 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Introduction

A need to prove parallel programs :
cost of the crash of massively parallel computations
more and more parallel programs

Additional difficulties :
Communication procedures
Synchronization mechanisms
Interleaving of instructions

Use of Hoare semantics
Annotated programs
Generation of proof obligations

HLPP 2010 2 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Bulk Synchronous Parallelism (BSP)

BSP computer

p couples
processor/memory

with a communication
network (g)

and a synchronization
unit (L)

HLPP 2010 3 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Bulk Synchronous Parallelism (BSP)

BSP computer

p couples
processor/memory

with a communication
network (g)

and a synchronization
unit (L)

HLPP 2010 3 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Bulk Synchronous Parallelism (BSP)

BSP computer

p couples
processor/memory

with a communication
network (g)

and a synchronization
unit (L)

Properties

Determinism

No deadlocks

Estimation of computing
time

HLPP 2010 3 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

BSPlib/PUB

Library for the BSP model :

C Language

Send/Receive routines

DRMA routines

High-performance operations (not safe)

HLPP 2010 4 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

BSPlib/PUB

Library for the BSP model :

C Language

Send/Receive routines

DRMA routines

High-performance operations (not safe)

HLPP 2010 4 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

BSPlib/PUB

Library for the BSP model :

C Language

Send/Receive routines

DRMA routines

High-performance operations (not safe)

HLPP 2010 4 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

BSPlib/PUB

Library for the BSP model :

C Language

Send/Receive routines

DRMA routines

High-performance operations (not safe)

HLPP 2010 4 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

PUB Communications

Two kinds of communications :
Message Passing (BSMP)

void bsp_send(int dest,void ∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void ∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void ∗ src,int offset,
void ∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

HLPP 2010 5 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

PUB Communications

Two kinds of communications :
Message Passing (BSMP)

void bsp_send(int dest,void ∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void ∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void ∗ src,int offset,
void ∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

HLPP 2010 5 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

PUB Communications

Two kinds of communications :
Message Passing (BSMP)

void bsp_send(int dest,void ∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void ∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void ∗ src,int offset,
void ∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

HLPP 2010 5 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

PUB Communications

Two kinds of communications :
Message Passing (BSMP)

void bsp_send(int dest,void ∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void ∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void ∗ src,int offset,
void ∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

HLPP 2010 5 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

PUB Communications

Two kinds of communications :
Message Passing (BSMP)

void bsp_send(int dest,void ∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void ∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void ∗ src,int offset,
void ∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

HLPP 2010 5 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

PUB Communications

Two kinds of communications :
Message Passing (BSMP)

void bsp_send(int dest,void ∗ buffer, int size)
t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA)
void bsp_push_reg (t_bsp∗ bsp, void ∗ ident, int size)
void bsp_get (t_bsp∗ bsp, int srcPID, void ∗ src,int offset,
void ∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

HLPP 2010 5 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

The Why Language

Why : an intermediate language

For program verification

Annotated programs

Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .)

HLPP 2010 6 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

The Why Language

Why : an intermediate language

For program verification

Annotated programs

Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .)

HLPP 2010 6 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

The Why Language

Why : an intermediate language

For program verification

Annotated programs

Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .)

HLPP 2010 6 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

The Why Language

Why : an intermediate language

For program verification

Annotated programs

Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .)

HLPP 2010 6 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

The Why Language

Why : an intermediate language

For program verification

Annotated programs

Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .)

HLPP 2010 6 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Language definition

BSP-Why is extended from Why

Additional instructions for parallel operations

Additional notations in assertions about parallelism

HLPP 2010 7 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Language definition

BSPWhy ::= Why

| sync synchronisation

| push (x) Register x for global access

| put (e, x , y) Distant writing

| send (x ,e) Message passing

HLPP 2010 8 / 24

Introduction
Transformation to Why

Example
Conclusion

Introduction
The BSP model
BSPlib/PUB
Why
BSP-WHY

Logic extensions

x is used to represent the value of x on the current
processor

x < i > is used to represent the value of x on the
processor i

< x > is used to represent the parallel variable x as an
array

HLPP 2010 9 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

General idea of the transformation

Simulation of the parallel execution by a sequential execution

SYNC SYNC

P1 P2 P3

HLPP 2010 10 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Decomposition into blocks

We extract the biggest blocks of code without synchronization :

sync

i1;
i2;

while b1 do i3;
i4;

Bloc1

Bloc2

sync

if b2 then i5 else i6;
i7;

i1;
i2;

while b1 do i3;
i4;

sync;
if b2 then i5 else i6;

i7;
sync;

HLPP 2010 11 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Decomposition into blocks

Each block is transformed into a for loop :

for i = 1 to p do
 [b1]

for i = 1 to p do
 [b1]

b1

b2

sync

sync

sync

sync

HLPP 2010 12 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Decomposition into blocks

Need to check that the sync instruction match : no code such
as

if pid=0 then sync
else p

or even

if pid=0 then p1;sync
else p2;sync

HLPP 2010 13 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Decomposition into blocks

Need to check that the sync instruction match : no code such
as

if pid=0 then sync
else p

or even

if pid=0 then p1;sync
else p2;sync

HLPP 2010 13 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Memory management

p processors → 1 processor : need to simulate p memories in
one.

variable x → p-array x

Special arrays to store communications

HLPP 2010 14 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Transformation of variables

BSPWhy term Why term
x x[i]

<x> x
x<j> x[j]

HLPP 2010 15 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Variable not transformed into arrays

Some special cases :

A variable which lives only in a sequential block

A variable used with remote access communications

HLPP 2010 16 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Send communications

Communications are defined in a Why prelude file.

Messages are stored in lists

The bsp_send function is defined as a parameter

Send communications are done with a predicate

The synchronisation calls each communication predicate

HLPP 2010 17 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Send communications

Communications are defined in a Why prelude file.

Messages are stored in lists

The bsp_send function is defined as a parameter

Send communications are done with a predicate

The synchronisation calls each communication predicate

HLPP 2010 17 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Send communications

Communications are defined in a Why prelude file.

Messages are stored in lists

The bsp_send function is defined as a parameter

Send communications are done with a predicate

The synchronisation calls each communication predicate

HLPP 2010 17 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Send communications

Communications are defined in a Why prelude file.

Messages are stored in lists

The bsp_send function is defined as a parameter

Send communications are done with a predicate

The synchronisation calls each communication predicate

HLPP 2010 17 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

Send communications

Communications are defined in a Why prelude file.

Messages are stored in lists

The bsp_send function is defined as a parameter

Send communications are done with a predicate

The synchronisation calls each communication predicate

HLPP 2010 17 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

PUT / GET operations

Memory model more complex

A table of variables is stored

An association table keeps records of push associations

Queues for push, pop, put and get operations

HLPP 2010 18 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

PUT / GET operations

The association table is needed :

Proc 1 Proc 2

Push(x) Push(y)
Push(y) Push(x)
sync sync

P1 P2
x y
y x

HLPP 2010 19 / 24

Introduction
Transformation to Why

Example
Conclusion

General idea
Transformation of variables
Send communications
PUT/GET operations

PUT / GET operations

The association table is needed :

Proc 1 Proc 2

Push(x) Push(y)
Push(y) Push(x)
sync sync

P1 P2
x y
y x

HLPP 2010 19 / 24

Introduction
Transformation to Why

Example
Conclusion

BSP-Why prefix calculation
Algorithm

Example : prefix calculation

At the beginning, each processor i contains a value xi

At the end, each processor contains the prefix
x0 ∗ x1 ∗ · · · ∗ xi

Useful in many calculations (FFT, n-body, graph algorithms
etc.)

HLPP 2010 20 / 24

Introduction
Transformation to Why

Example
Conclusion

BSP-Why prefix calculation
Algorithm

Example : prefix calculation

parameterg x: int ref

let prefixes () =
(let y = ref (bsp_pid void + 1) in

while (!y < nprocs) do

bsp_send !y (cast_int !x);
y := !y + 1

done);

bsp_sync ;
(

z:=x;
let y = ref 0 in
while (!y < bsp_pid void) do

z := !z + uncast_int (bsp_findmsg !y 0);
y := !y + 1

done)

HLPP 2010 21 / 24

Introduction
Transformation to Why

Example
Conclusion

BSP-Why prefix calculation
Algorithm

Example : prefix calculation

parameterg x: int ref

let prefixes () = {}
(let y = ref (bsp_pid void + 1) in

while (!y < nprocs) do
{

invariant envCsendIs(j,bsp_pid + 1,y,j,x)
variant nprocs − y

}
bsp_send !y (cast_int !x);
y := !y + 1

done);
{ envCsendIs(j,bsp_pid + 1,nprocs−1,j,x) }
bsp_sync ;
(

z:=x;
let y = ref 0 in
while (!y < bsp_pid void) do

{
invariant z=x+sigma_prefix(<x>, y)

variant bsp_pid − y
}
z := !z + uncast_int (bsp_findmsg !y 0);
y := !y + 1

done)
{ z=sigma_prefix(<x>, bsp_pid)}

HLPP 2010 22 / 24

Introduction
Transformation to Why

Example
Conclusion

Conclusion

Summary :

BSP-Why is an extension of the Why language for BSP
programs

BSP-Why programs are transformed into Why programs

The proof obligations are generated by Why

HLPP 2010 23 / 24

Introduction
Transformation to Why

Example
Conclusion

Conclusion

Summary :

BSP-Why is an extension of the Why language for BSP
programs

BSP-Why programs are transformed into Why programs

The proof obligations are generated by Why

HLPP 2010 23 / 24

Introduction
Transformation to Why

Example
Conclusion

Conclusion

Summary :

BSP-Why is an extension of the Why language for BSP
programs

BSP-Why programs are transformed into Why programs

The proof obligations are generated by Why

HLPP 2010 23 / 24

Introduction
Transformation to Why

Example
Conclusion

Conclusion

Summary :

BSP-Why is an extension of the Why language for BSP
programs

BSP-Why programs are transformed into Why programs

The proof obligations are generated by Why

HLPP 2010 23 / 24

Introduction
Transformation to Why

Example
Conclusion

Conclusion

Summary :

BSP-Why is an extension of the Why language for BSP
programs

BSP-Why programs are transformed into Why programs

The proof obligations are generated by Why

HLPP 2010 23 / 24

Introduction
Transformation to Why

Example
Conclusion

Outlook

The aim is to generate BSP-Why code from a BSP-C
program

Use of Frama-C with the Jessie plugin

Use this work to prove MPI programs with only global
operations

HLPP 2010 24 / 24

Introduction
Transformation to Why

Example
Conclusion

Outlook

The aim is to generate BSP-Why code from a BSP-C
program

Use of Frama-C with the Jessie plugin

Use this work to prove MPI programs with only global
operations

HLPP 2010 24 / 24

Introduction
Transformation to Why

Example
Conclusion

Outlook

The aim is to generate BSP-Why code from a BSP-C
program

Use of Frama-C with the Jessie plugin

Use this work to prove MPI programs with only global
operations

HLPP 2010 24 / 24

	Introduction
	Transformation to Why
	Example
	Conclusion

